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Semisimple Lie superalgebras which are not the direct sums of 
simple Lie superalgebrast 

J P Hurni 
Departement de Physique Theorique, Universiti de Geneve, 121 1 Genkve 4, Switzerland 

Received 25 September 1985, in final form 30 January 1986 

Abstract. Any finite-dimensional semisimple Lie algebra ( L A )  is known to be realised as 
a direct sum of simple LA.  The situation is somewhat more complicated in the Lie 
superalgebra (LSA)  case. A theorem of Kac states how to build all the semisimple LSA. 

The goal of this paper is to give some explicit examples arising from this theorem, such 
illustrations perhaps being better understood by physicists rather than an abstract statement; 
and to show the relevance of the Neveu-Schwarz and Ramond superalgebras when 
generalising the theorem to the infinite case. 

1. Introduction 

It is well known that in the case of finite Lie algebras, these four statements are 
equivalent : L is a semisimple LA i f  

L does not contain any solvable ideal 

L is the direct sum of simple LA 

L has a non-degenerate Killing form 

all the finite representations of L are completely reducible. 

(1.3) 

(1.4) 

Remember that a solvable Lie algebra R satisfies by definition the following 
property: 

[R, RI = R' 

[R ' ,  R'] = R2 

[R",R"]=O 

where [ , 3 denotes the traditional bracket ( R  is an  ideal of L if [L, R ] c  R). 
Given the definition (1.1) it is therefore easy to understand intuitively the following 

theorem: let L be any Lie algebra, then S = L/R, where R denotes the maximal solvable 
ideal, is semisimple. 

Clearly, this theorem does not give a very practical way of finding all the possible 
semisimple Lie algebras. Happily all the simple Lie algebras are classified; therefore 
all the semisimple LA are easily found thanks to (1.2). 
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When considering LSA instead of LA, the four above-mentioned statements are 
pairwise inequivalent, each statement being strictly less general than its predecessor. 
Therefore ( l . l ) ,  when considering the standard bracket [ , } for the LSA, is the only 
exhaustive definition of a semisimple LSA. 

All the simple LSA have been classified [ 1,2];  some of them have a non-degenerate 
Killing form, in which case it is indicated by * in table Al .  

Thanks to table A1 the semisimple LSA satisfying (1.2) are easy to build. A theorem 
states that (1.3) is the direct sum of simple LSA, each having a non-degenerate Killing 
form [ l ] .  Furthermore, it is well known that only for direct sums of the B(0 ,  n )  class 
of LSA (and the simple LA seen as trivially graded LSA) does the complete reducibility 
of representations hold [ 51; this gives ( 1.4). 

The semisimple LSA satisfying (1.2)-(1.4) are direct sums of simple LSA. Therefore 
their structures are easily understood once we know the structures of their respective 
simple sub-LSA. 

The structure of the semisimple LSA which are not direct sums of simple ones can 
be recovered using a theorem due to Kac [ 13, thereafter called the main theorem. The 
structure of the resulting LSA may look somewhat unfamiliar to physicists. Therefore 
this paper tries to shed some light on particular aspects of the theorem by means of 
many examples. 

In § 2 we recall some basic definitions and theorems. In § 3 we present the ‘main 
theorem’. Section 4 is divided into five ‘examples’, each giving an illustration’ of a 
particular aspect of the general problem. Using the main theorem, i t  is possible ( 5  5) 
to construct (infinite-dimensional) semisimple LA which are not direcr sums of simple 
ones. An example is the semidirect sum of a loop algebra by the centreless Virasoro 
algebra. In the second part of § 5 we consider the extension to the infinite superalgebras 
case. 

2. Reminder of some results 

Definitions. A superalgebra A = A o + A ,  is a &-graded algebra such that X,X, E 

A,+, vxk E Ak ; a Lie superalgebra G = Go+ G, is a superalgebra where the product, 
denoted [ , }, satisfies the following properties: 

[ X ,  y }  = -(-1)f(X)F( Y )  r y, x >  (graded anticommutativity) 

(super-Jacobi identity) - ( - I ) F ( X ) E ( Z )  [ X ,  [ Y, 2)) = 0 
CP 

where E ( X )  denotes the degree of X and ZCp the cyclic permutations of X ,  Y and 2. 
A given associative superalgebra can be turned into a Lie superalgebra if we identify 

[ a ,  b} with the commutator [ a ,  b] = a b  - ba when a and/or b is even, and with the 
anticommutator {a, 6 )  = a6 + 6a when both a and 6 are odd. 

Theorem. Let G be a finite-dimensional Lie superalgebra, then G contains a unique 
maximal solvable ideal R. Then the Lie superalgebra G / R  is semisimple. 

Example. Physicists are interested in the super-Poincar6 algebra P = Po+ S, where Po 
is the Lorentz algebra so(3, l ) ,  and where S =  P, + P2 is the so-called supersymmetry 
algebra (spanned by the pure supersymmetry generators Qe, E P, , a, ci = 1 ,2 ,  and 
the translations T, E P2 ,  i = 0, . . . ,3 with the following commutation relations: 
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{ O R ,  oh} = ~ ( U ' ) ~ ~ T ,  the other brackets remaining zero). P has a consistent Z grada- 
tion, i.e. [PE, P,} c P,,,. Thus P is clearly non-semisimple, S being the maximal solvable 
ideal. We can effectively show, according to the theorem, that P/S is a Lie superalgebra 
(isomorphic to the Lorentz algebra) which is semisimple. 

Remark. In general the factor space G/R is not simply the subspace of G that does 
not contain R. For example, G = su( n + 1/ n + 1) has a one-dimensional centre which 
is the maximal solvable ideal R: G =  F + R .  However the anticommutation of some 
odd generators give contributions to the centre, [F, F} = G. Thus F is not a LSA. 

However it is possible to redefine the anticommutators in such a way that [ F, F}' = F. 
In that case F ( = G / R )  is isomorphic to the simple (thus a fortiori semisimple) LSA 

called A(n, n). Strictly speaking, su(n + l / n  + 1) is the central extension of A(n,  n). 

Definitions. Let the G, denote subspaces of G; GI n G, = 0 V i  # j then, if [G, G I }  = 
GI + G, + GI +. . . , a graph of G is the set of all the arrows coming from the GI going 
to each G, # G,. A graph is generally not unique, e.g. super-Poincar6 has the following 
graphs: Po+ S ,  and many others. 

It is clearly an  alternative notation for the semi-direct sum: 

VI 3 v*= VI + v,. 
Let V be a 2,-graded space, V = V,+ VI, then the superdimension of V, sdim V, is the 
dimension of V, minus the dimension of VI. 

Proposition 1 .  Let V = V,+ VI be a finite irreducible representation of the solvable LSA 

G=G, ,+G, ,  then 

either sdim V=O and dim V = 2 '  O < s s d i m  GI 

or dim V = l ( = s d i m  V). 

Proposition 2. All irreducible representations of the solvable LSA G are one dimensional 
if and only if {GI,  GI} c [Go, Go]. 

Corollary. The supersymmetry algebra admits non-trivial finite irreducible representa- 
tions, as {PI , PI} = P2 $ 0 = [ P,, P,]; therefore any faithful irreducible representation V 
has sdim V=O. This is a well known result [3]. 

3. The main theorem 

Definition 1 .  Let A = A,+ A ,  be a superalgebra, der A the Lie superalgebra of its 
derivations, and  L a subset of der A, then A is said to be 'L-simple' if A contains no 
non-trivial ideals that are invariant under all derivations in L. 
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Definition 2. Let G be a Lie superalgebra, then der G denotes the Lie superalgebra of 
its derivations, and inder G ( = G  when G is centreless) the ideal of der G consisting 
of the inner derivations. 

Definition 3. A ( n )  denotes the 2"-dimensional Grassmann algebra in n variables 
tl, . . . , (titj = -tjti, Vi, j ) .  A Grassmann algebra is an  associative superalgebra (we 
put & ( [ I )  = 1). 

Definition 4. der A( n) = W (  n) is the 2" n-dimensional LSA of the derivations of h ( n ) .  
The basis vectors { Di} can be written in the following way: { P( tl, . . . , 5") * a*,}, where 
the derivations a ,  defined by d , , ( t j )  = 6, are multiplied by polynomials in the ti .  W ( n )  
is simple for n 2 2. Note that W(2) = S I (  1/2). 

Definition 5. Let A be a sub-Ls.4 of a LSA called B. Then the normaliser of A in B is 
the subset N of B such that [ N ,  A} c A. 

Lemma. Let G be a LSA and A ( n )  a Grassmann algebra. Then S = G @ A ( n )  is also a 
LSA. 

Proof: A generator of S can be seen as a couple X 0 U where X is a generator of G 
and U a generator of ,i( n ) .  The generators of S have to satisfy the graded anticommuta- 
tion relations and the super-Jacobi identities. The following definition of the bracket: 

[ X O U ,  x ' @ u ' } = ( - 1 ) * ' ~ ' ~ * ' ~  ( [ X , X ' } @ u .  U') 

is consistent with the structure of a LSA.  

We see that X 0 U is even if both X and U are even or odd, and that X 8 U is odd 
if X and U do not have the same parity. 

Remark. S = G O  ,I( n), n 3 1, cannot be a semisimple LSA, as the set of generators of 
the form X O u ,  where U # 1, span an ideal solvable of S, due to the nilpotent of the 6,. 

To formulate the main theorem, we still need the following ingredients. Let S , ,  . . . , S, 
be finite simple Lie superalgebras, n ,  , . . . , n,  be non-negative integers and S =e:-, S,  8 
I(n,). Then 

S = i n d e r S = $  ( i n d e r S , ) O A ( n , ) c d e r S ~ $  ( ( d e r S , ) O A ( n , ) 0 1 0 d e r A ( n l ) ) .  

The commutation relations among generators A and B of der S are the following. 

, r 

, = 1  I = 1  

( i )  According to the lemma, we already know them if both A and B belong to 
d e r S , O . I ( n , ) .  
( i i )  Finally the obvious action of der S on S makes der S a Z,-graded associative 

algebra. The resulting Lie superalgebra is given by the natural commutators/anticom- 
mutators. In particular, if both A = 1 0  D and B = 1 0  D' belong to 1 @der I( n, ), then 
we simply have [ lOD, 1OD'}= lO[D, D'}, and [ l @ D , X 0 u } = X O D ( u ) ,  where 
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X belongs now to der S, and D( U )  denotes the action of the derivation D E  W (  n, )  on 
the element U E A(n , ) ;  clearly D ( u )  belongs to A ( n , ) .  

Main theorem. Let L be a subalgebra of der S containing S; we denote by L, the set 
of components of elements of L in 1 @der A( n,). Then 

(a )  L is semisimple if and  only if ' . i (n,)  is LE-simple for all i ;  
(b)  all finite-dimensional semisimple LSA arise in the manner indicated; 
(c) der L is the normaliser of L in der S, provided that L is semisimple. 

Discussion. It is clear from the definitions of the superbracket that L, a semisimple 
LSA, consists essentially of the semidirect sum of two LSA: one which is S itself, i.e. 
@!inder S , @ A ( n , ) ,  and another one which is essentially a sub-Ls .4  of a direct sum of 
the simple LSA der A(n , )  L- W(n , ) .  

If some of the simple LSA S, involved in the above construction d o  not coincide 
with the LSA of their derivations, there may be additional terms in L that d o  not belong 
to S and the W ( n , ) ,  as we shall see in the next section. 

The descriptions of the simple S, and their corresponding der S,, which are given 
in table A l ,  can be found in [ I ,  21. 

In the following, when S = @ :  inder S , @ h ( n , ) = @ :  S , @ A ( n , ) ,  I = 1, S ,  will be 
written as G in order to avoid confusion with the &-grading of this last LSA. 

Proof of the  main theorem. See [l] .  

4. Examples 

According to the main theorem, there are many possible semisimple LSA, embedding 
S, embedded in der S. 

The main difficulty is to satisfy the point (a) of the main theorem; therefore in the 
first example we choose S =  G@A(n)  to be s1(1/2)@A(2) for the following reasons: 
the ideals of A( 1) are too simple, and by choosing SI(  1/2) we avoid a complication 
that we reserve for the second example. 

In the first example we exhibit explicitly four inequivalent semisimple LSA, but the 
reader can convince himself or herself that finding the number of inequivalent semi- 
simple LSA that can appear is quite similar in a certain sense to the classification of 
all the subalgebras of the simple LSA W ( 2 )  in that particular case; W (  n )  in the general 
case. The second example shows that there are inequivalent semisimple LSA which 
satisfy the point (a )  of the main theorem in exactly the same fashion. This occurs 
when the simple LSA SI are not isomorphic to the LSA of their derivations. The third 
example speaks for itself. The fourth example shows that we really have to consider 
all the possibilities allowed by the concise formulation of the main theorem. 

In many of these examples we give, for some L, the corresponding der L that we 
obtain according to the point (c) of the main theorem. Note that each der L is 
semisimple as it satisfies (a).  

In  the fifth example we realise a semisimple LSA following a procedure slightly 
different from the one prescribed by the main theorem. However this LSA is in fact 
isomorphic to one found in example 1; this confirms the point (b)  of the main theorem. 
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Example 1 .  We consider S = S , O A ( n l )  =s1(1/2)OA(2). 

(2)+ ,  + (2)LI as Go modules. We can represent G by 3 x 3 matrices: 
(i) G = SI( 1/2) is an eight-dimensional, rank-2, simple LSA; Go = sI(2) + U (  l ) ,  G I  = 

E+ = l k i  \ I  o l  

Remarks. H,  E + ,  E- are the generators of the s1(2), Q is the one of the U( l ) ,  it verifies 
the commutation relations [ Q, XI = 0, VX E Go and [ Q, F,,] = * F,,, i = 1,2, 

der sl( 1/21 = s1(1/2) 

(ii) A(2) is a four-dimensional associative superalgebra with basis vectors 1, t1, 
12, where the 5, are Grassmann variables. A generator XOu is represented by 
the 3 x 3 matrix representing X ,  but where every non-zero entries are multiplied by U, 
for example: 

and so on. Let G U denote the space spanned by the set of X 0 u, VX E G, for a given 
U E A(2); then we have the following graph of inder S: 

G 5152 

To be more complete, consider the non-trivial ideals of A(2):  

11: (51; 5 2 ;  5 1 5 2 )  1 2 :  (51; 5152)  1 3 :  ( 5 2 ;  5 1 5 2 )  

14: ( 5 1 5 2 )  IdA): ( 5 1 + A 5 2 ;  5 1 5 2 )  O # A # m .  
Let F, denote the factor space A( 2) /  Zi ;  G( Fi) and G( I , )  are spanned by { X  0 U such 
that X E G; u E F, ,  respectively u E Ii}, then the following graph of inder S shows that 
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this last LSA is not semisimple since [ . . . [G(I , ) ,  G(I , ) } ,  . . . , G(I , ) }  = 0: 

G ( F , )  

I 
Consider now the following commutation relation: 

E 1 @der A(2) E 

This example provides a good illustration that 
(1) inder S is an ideal of L, 
( 2 )  due to the element 1 0  [ ,a,  we obtain the following subgraph of L, for i = 3: 

G( F, )  

I 
G(I0. 

In fact, in order to obtain semisimplicity we need subgraphs like the above one, 
V ( F , ,  I , ) .  Therefore, in order that no G(I , )  remains invariant, the use of a suitable 
subset of derivations 100 in l@der  A(2) is needed (hence the formulation of point 
(a ) ) ;  this will now be done. 

( i i i )  Let the eight basis vectors of der A(2)  = W ( 2 )  be 

{ D I 9 . .  . , D d =  {aE, ;  &a,,; t2aE,; &aEz;  t 2 d , ;  td2ac,; t1t2a,J. 
Due to the above-mentioned commutation relations [ 1 0  D,,  X 0 U }  = X @  D,( U )  we 
see that the non-trivial part of the job is to compute the D l ( u ) .  

It is easy to check if 3u E 4 such that D,( U )  = U 6 I,. In that case D, does not leave 
I, invariant and we note this by a Y in table 1. Otherwise if D, does leave I ,  invariant 
we note this by a point. 

We really need the two derivations D ,  and D2 since the derivation D = ad,, + bat?, 
a # 0 # 6 leaves invariant the ideal Z5( - a /  b ) .  

Table 1. 

I ,  Y Y 
IZ Y Y 

Y Y I ,  14 Y Y 

15 Y Y Y Y Y Y 
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ProoJ: Any VEZ,(A) can be written V = v , ( ~ l + h ~ 2 ) + u 2 - $ ' 1 5 2 ,  then D V =  

(iv) Let L ,  = (D , ;  D2) denote the space spanned by the derivations D, and D 2 .  
Then L = inder S 33 L ,  is clearly a semisimple LSA: this is our first example. The graph 
of L is 

U )  ( a + bh ) - ~2 * b ( 51 + h52) + u Z (  a + bh ) 5 2  . 

Another semisimple LSA is L = inder S B(D, ;  D2; D4), the graph of this second example 
is 

(v )  Note that in general inder S +  M ,  where M is spanned by a set of derivations 
that do not leave all the ideals of h(2) invariant, is not a LSA, as there can exist some 
derivations in [ M ,  M }  that do not belong to M. Therefore we have to take L, = 
M + [ M, M }  + [[ M, M } ,  M }  + . . . , in order for L = inder S 3 L, to be a Lie superalgebra. 

For example, we cannot have L, = ( d , ,  d,)  where d ,  = D ,  - D, and d2= D2 - D,, 
because +{ d ,  , d , }  = D, E d ,  , { d ,  , d,}  = D3 - D, = d ,  and f { d 2 ,  d , }  = D, = d , .  Note that 
the two derivatives D ,  and D2 do appear only as components of d ,  and d2 and that 
d , ,  d 2 ,  d 3 ,  d ,  and d ,  are the five generators of the simple LSA called s(2),  which is 
isomorphic to osp( 1/2). This gives a third example of semisimple LSA: inder S 3 s(2).  

Other examples, D , ,  D,, D,, D, and D'= D3-  D,, are the five generators of the 
non-semisimple LSA called S(2) (S( n) is simple for n 3 3). The fourth example of 
semisimple LSA is then L = inder S 8 S(2). 

The graphs of these last two semisimple LSA are respectively 

sl( 1/2)0 ' \ (2)  &2) sl( 1 / 2 ) 0 h ( 2 )  BS(2)  
__--___-____-_--_-___--- ___________________-- - - -  

I I I I 

I I 
I s1(1/2) . 5 2  I ,-,--I I s1(1/2)-5,  I , - - - -  

I I IS(2)11 
; - l  5. 1 ; s1(1/2) I -  I .1 j 
I j 5(2 ) , '  ' 

I z I IS(2)OI I ' S(2),1 I 

I I s1(1/2) ' 5 2  I s1(1/2) * 5 2  I 
I 

= 
I______---__-_-______-' 

1 _ _ _ _  I - _ - _ I  I 

'_______---_-_____--_-_1 

where s ( 2 )  = 5(2),+ s (2) ,  and S ( 2 )  = S(2),+ S(21,. 
(vi) According to point (c) of the main theorem and using the following results: 

der s(2)  = s(2)  and der S(2) = S(2)', where the meaning of S(2)' is given in the appen- 
dix, we obtain der L = L  if L=s1(1/2)0A(2) B s ( 2 )  but der L-Lz where L' denotes 
s1(1/2)0A(2) BS(2)' if L=s1(1/2)0A(2)3S(2) .  
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Example 2. We consider now S = GO .2( l ) ,  where G is a simple LSA. 

(i)  A(1) is two dimensional with basis vectors 1, (. The only non-trivial ideal J is 
obviously spanned by (. W(1) is a solvable two-dimensional LSA with basis vectors 
a, and &aF. As only the derivation a, does not leave J invariant, the possible L,  are 
the spaces L', = (a,) and L',' = (ac ,  (a,). 

The graph of the LSA K = inder S + ((a,) indicates clearly why ((a,) cannot span a 
good L,: 

G 

(ii) If der G = G, then the two semisimple LSA we can obtain the following graphs: 

We call these two semisimple LSA (E2.1) and (E2.2). 
(iii) If der G = G 33 ( z )  = G' where ( z )  is a one-dimensional space spanned by the 

derivation z, the graphs of the six possible semisimple LSA, that we name from (E2.3)  
to (E2.8), are 

ci - (a,) G - (a,) 

G . 5  - ( [ a , )  
I T  I 

G . 5  

T\l T 
be)- 

Note that the following vector spaces (G; G . (; z * 5; a,) and (G; G . 5; z * 5; a,; @,) 
are not Lie superalgebras as { z  0 6, 8,) = z :  

---_ __/------__ --. --. _**---- 

OF G - (at) G -(de) 

I I / 
+ 
I I t 
I I I I t 

G a l - ((a,). ( z O O - G O 5  
/ 

/ 
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(iv) We simply have 

der( E2. i)  = der( E2.2) 

der( E2.j)  i= der( E2.6) 

der( E . 2 k )  = der( E2.8)  

i = l , 2  

j = 3 , 4 , 6  

k = 5,7, 8.  

Remark. Let H be a simple LA. Then L = HOA(1) +(a,) is called H' in [ l ] .  By 
extension, if in place of H we have a simple LSA say G, we will call G' the corre- 
sponding L. 

Example 3. We consider now S =e1 S,  @ A (  n,) where each n, is zero. 
(i) In that case L = $ I  S, is a direct sum of simple LSA. 

(ii) der L = $, der SI. 

Example 4. Let L=$:= ,  ( S 3 @ A ( n , ) + ( a c , ) )  where all the n, are equal to 1 .  It is a 
generalisation of example 2 where r was put to 1 .  

Strictly speaking it describes a direct sum of the S* type of semisimple LSA. Thus 
its graph is 

s, * 51 * SI + @ e , )  

s, * 5 2  * s, + @ e 2 )  

s r  * 5 r  - s r  +(a,,). 
We have also the implicit possibility to identify all the A(1)  giving 

The possible identification of all the .I( n , )  is in fact foreseen in the formulation of the 
main theorem; it is sufficient to see the graph of the previous LSA in the following way: 

(L,,  the component of L in 1 @der A ( n , ) ,  is given by a J , .  If some a ,  = 0, then L is not 
semisimple.) 

This LSA is called G( S I ,  . . . , S,, ( a , d , ,  + aZaCZ + . . . + a,a , , ) )  by Kac [ 1 b]. The generali- 
sation of this last notation is clear, for example, G ( S , ,  S2 ,  S3, (a[,; adg,+ ba,,)) has the 
following graph: 

SI ' 51 - SI +(a€ , )  
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Example 5. Let G be a simple LSA and its generators x, satisfy the following commutation 
relations: [x,, x,} =f;xk. If we identify the elements of the LSA GS in the following 
way: X ,  = x, 0 1, Y,  = y ,  0 5 and U = 1 Oat, then 

(1) [ X ,  X,}  =fix [U, X , }  = 0 
[XI ,  Y,l = f v Y k  [U, Y , > = X ,  
[Y , ,  q = o  {U, u } = O .  

(2) T = G E  0 A( 1) +(a , )  is a semisimple LSA, whose graph is 

T is realised in a way which is not exactly given by the main theorem. We see however 
that T has the same graph as the second semisimple LSA appearing in example 1; 
furthermore they really are isomorphic. This confirms point (b) of the main theorem. 

5. The infinite case 

5.1. The Lie algebra case 

The Lie algebras are trivially graded Lie superalgebras. Therefore it is also possible, 
using the main theorem, to build semisimple LA which are not direct sums of simple 
ones. Instead of taking the tensor product of a semisimple Lie algebra with a Grassmann 
algebra, we take it with a commuting algebra, the polynomial ring K [ x ,  , . . . , x,] for 
example. 

The commuting nature of these algebras implies, however, the corresponding 
semisimple Lie algebras to be infinite. 

Example. If we take S = G O K [ x ] ,  G being a simple finite Lie algebra, we can now 
consider some Lie algebras L such that 

inder S E S c  L c  der S =  S %der K[x] 

where KI  = der K[x] is the well known contact Lie algebra whose set of basis vectors 
can be realised as {xi - a,, V i  E 2, U{O}}. 

By analogy with the notation of a previous remark (0 3), we call G" the following 
Lie algebra: G O  K[x] + (a,). 

If we consider the loop algebra S = GOC[x,  x-'1, where G is a semisimple LA and 
C[x, x-'1 is the Laurent polynomial algebra, we can also obtain some semisimple Lie 
algebra L where S = L c der S .  

Note that der S = S 3 V .  (V= der C[x, x-I] is the well known centreless Virasoro 
algebra.) 

Remark 1 .  The generators U, of the Virasoro algebra, which satisfy in their canonical 
form the commutation relations 

[U,, U,] = ( i - j )  U,,, Vi ,  j E Z 

can be realised in the following way: U, = x i+ '  * a,. This algebra can also be realised 
by gluing carefully two copies of the above-mentioned Lie algebra K, [4]. 
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Remark 2. The loop algebra L(G) =GOC[x,  x-'1, where G is a simpje finite LA, is 
also a simple (infinite) LA. However it is the non-semisimple algebra L(G) L(G) 8 
(u,)@(c), where (c) denotes the centre, which has the nice algebraic property o,f being 
defined by the means of canonical generators and a Cartan matrix. In fact L(G) is 
one of the Kac-Moody algebras, of the affine non-twisted type. 

5.2. The Lie superalgebra case 

An extension of 5 5.1, where G are taken to be finite simple LSA, is trivial. (Note 
however that C(G) is a Kac-Moody superalgebra only if the Killing form of G is 
non-degenerate.) 

Example 1. Let S = GOC[x, x-'1 where G is a simple LSA. Then der S = S 8 V ,  where 
V is again the centreless Virasoro algebra, is an infinite semisimple LSA. 

Note that the Neveu-Schwarz and Ramond LSA (which are the two standard LSA 

built around the Virasoro algebra) do not appear when considering the LSA of the 
derivations of a loop superalgebra (i.e. the LSA built around a loop algebra): 

V=derS/S  where S is a loop (super)algebra. 

A little more difficult is the case when considering the tensor product of G with 
the superalgebras A ( m ,  n )  = K[x,, . . . , x,]OA(n); happily the structure of W ( m ,  n )  = 
der A( m, n ) ,  and some of its subalgebras generalising the Cartan simple Lie algebras, 
is sufficiently well known [ 11. 

Example 2. Consider S = GOA( 1, 1) where G is a finite simple LSA. 

5x". a t }  is a base of W (  1, 1). 
A base of A(1, 1) is given by {x"', 5. x"}. Correspondingly { x i .  a,; [x'. a,; x m .  a t ;  

The important subalgebra K( 1, 1) of W (  1, 1) is spanned by the derivations satisfying 

An explicit base of K( 1, 1) is given by 

{ D , ~ ( i x ' - ' [ a , + 2 x ' . a x ) ;  d J = x J ( a , + ~ . a x ) } .  

These derivations satisfy the following commutation relations: 

[Q,  0 , 1 = 2 ( i - j )  * & - ,  

{ d , ,  d,} = Q+, 

dJ]=(i-2j) ' d!+,- ,  

as we can easily check by applying these derivations on any function f(x, 6) = 
a ( x ) . [ + b ( x ) .  Again L = S 3 1 O K ( l , l )  is semisimple. 

If we extend the previous 
L(G) + L(G) . 5 and we obtain a 

L(G) 
t ' NS 

L ( G ) .  5' 
where NS denotes the centreless 

example to the negative powers of x, then S =  
semisimple LSA which has the following graph: 

Neveu-Schwarz superalgebra. 
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R o o t  First, the structure of the ‘extended (by A(1) )  loop superalgebra’ L(G)+ 
L(G) . ,&= GOC(x,  x-’)@A(l)simply comes from the definitions; next, the canonical 
commutation relations among the generators of NS = (U,;  U,), i E Z, j E Z + 4, which are 

[U,, U,] = ( i  - j )  . U,+, 

[U,, U,] = (ii - j )  * U,+] 

{U,, U,} = 2 4 + ,  

can be recovered if we perform the following identification: 

U ,  =iD,+i 

uJ = d l + i / 2 .  

Keeping these definitions for U, and U,, but both with i, j E 2, gives a realisation of the 
Ramond superalgebra R. The action of these derivations on an extended loop super- 
algebra can be computed if we realise this last one in the following way: 

G@C(x”’, x-’ ’)@ A( 1). 

Note that the centreless NS and R do appear as subalgebras of der S/S, where S is an 
‘extended’ loop (superalgebra). 

The unitary irreducible (positive energy) representations of the central extension 
of many of these LSA and their applications to two-dimensional quantum theory are 
discussed in a recent paper [6] of Kac and Todorov. We compare the respective 
notation below. 

Present DaDer Kac-Todorov 
d G  

(dG)l ,2=dG+(c) ;deg  O = f  (z),, = E+ (c), deg O = 0 
V 
SVI,, 
SVO 

So( G) = (%)o + SV,. 

= dG@C[ t ,  t - ’ ;  e]; deg( t )  = 1 
A - 

Sl/*(G) = ( G / 2 + S V 1 / 2  

The degree of t and 8 refers to the 2 gradation of the ZOZz gradation of these LSA. 
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Appendix 

The LSA of the derivations of the simple LSA which are listed in table A1 are described 
in references [ l ,  21. Readers are warned that in this table we retain the notation of 
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Table A l .  

G Killing form der G dim(der G ) - d i m ( G )  

A ( m ,  n )  m f n * G 0 
A(n, n )  n # 1 G' 1 

D(2,1, a = O )  3 A(1, 1 )  
C ( n )  * G 0 

B(m, n )  * G 0 
D ( m , n ) m # n + l  * G 0 
D(n + 1, n )  G 0 
D(2, 1, a ) a  Z 0, -1, m. G 0 
F(4) * G 0 
G(3) * G 0 

G' 1 
d e r Q ( n )  1 

[l]; in particular a superalgebra G Z  = GB(z)  denotes the (finite) LSA for which the 
following commutation relations hold: if G = ek Gk, then [ z, XI = k . X ,  V X  E G k :  it 
has nothing to do with the infinite Lie (super)algebra G X  defined in 0 4. 
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